आईएसएसएन: 0974-276X
Michael Krappmann, Marco Luthardt, Frank Lesske and Thomas Letzel
(Bio)Informatics plays a major role in (prote)omic research experiments and applications. Analysis of an entire proteome including protein identification, protein quantification, detecting biological pathways, metabolite identification and others is not possible without software solutions for analyzing the resulting huge data sets. In the last decade plenty of software-tools, -platforms and databases have been developed by vendors of analytical hardware, as well as by freeware developers and the open source software community. Some of these software packages are very much specialized for one (omic) topic, as for example genomics, proteomics, interactomics or metabolomics. Other software tools and platforms can be applied in a more general manner, e.g. for generating workflows, or performing data conversion and data management, or statistics. Nowadays the main problem is not to find out a way, how to analyze the experimental data, but to identify the most suitable software for this purpose in the vast software-landscape.
This review focuses on the following issue: How complex is the link between biology, analysis and (bio) informatics, and how complex is the variety of software tools to be used for scientific investigations, starting from microorganisms up to the detection of a proteome. Thereby the main emphasis is on the variety in software for (LC) MS(/MS) proteomics. In the World Wide Web sites like ExPASy show extensive lists of proteomics software, leaving it to the user to identify which software actually serves their purposes.
First we consider the huge variability of software in the field of proteomics research. Then we take a closer look on the variability of MS data and the incompatibilities of software tools with respect to that. We give an overview over commonly used software technologies and finally end up with the question, whether open source software would not add more value to this field.