आईएसएसएन: 2379-1764
Bozegha WB
Statement of the problem: When molecular biologists observed in 1953 that the sequence of the DNA four bases in the nucleus of a cell influenced the sequence of the twenty amino acids of protein in the cytoplasm, they desired to find a code to account for the correlation, and eventually had the 64 triplet genetic code in 1954 from a mathematician, which is currently in use but not flawless.
Methodology and theoretical orientation: The said observation is seen as a natural example of an input/output system, in which the input is the DNA four bases and the output is the sequence of 24 permutations of the four DNA bases constituting the genetic code in the cytoplasm. A combinatorial input/output multiplicative replication system armed with basic permutations computation schemes is now available to produce permutations systematically, such as Square Kinematics Scheme and Successive Collateral Posting Scheme used.
Findings: A 24 quadruplet genetic code was produced by each of the two methods with an input set of the DNA four bases. It is shown in the successive collateral posting method that the 64 triplets comprise 40 non-permutations and 24 permutations. The 40 non-permutation triplets are crossed out leaving 24 permutation triplets which are undersized and therefore unqualified to represent the genetic code output sequence from an input set of 4.
Conclusion and significance: The 24 quadruplet genetic code is a breakthrough in the Molecular Biologists’ search for a code following their observation which ended up with the 64-triplet genetic code that has no combinatorially valid code word being triplets, instead of quadruplets.
Recommendations: These are made towards effective publicity of the new 24 quadruplet genetic code to attract experimental experts to spell it to win adoption in coding application in protein studies for a desired relief to stakeholders in genetics.