आईएसएसएन: 2161-0495
Freek G Bouwman, Anke Van Summeren, Anne Kienhuis, Leo van der Ven, Ewoud N Speksnijder, Jean-Paul Noben, Johan Renes, Jos C S Kleinjans and Edwin C M Mariman
To reduce the amount of laboratory animals which are used to analyze hepatotoxic properties of chemicals and drugs, the development of alternative in vitro models is necessary. Ideally these in vitro models reflect the in vivo toxicological response and cholestasis. In this study the protein expression in livers from C57BL/6 mice after cyclosporin A-induced cholestasis was analyzed. After 25 days of a daily cyclosporine A treatment the cholestatic phenotype was established. An in vitro to this in vivo study comparison was made by using the results of our previous studies with HepG2 and primary mouse hepatocytes. The in vivo proteomics data show cyclosporin Ainduced oxidative stress and mitochondrial dysfunction was actually induced, leading to a decreased mitochondrial ATP production and an altered urea cycle. These processes were also altered by cyclosporin A in the in vitro models HepG2 and primary mouse hepatocytes. In addition, detoxification enzymes like methyl- and glutathione-Stransferases were differentially expressed after cyclosporin A treatment. Changes in these detoxification enzymes were mainly detected in vivo, though primary mouse hepatocytes show a differential expression of some of these enzymes. By means of a functional classification of differentially expressed proteins we demonstrated similarities and differences between in vitro and in vivo models in the proteome response of cyclosporin A-induced hepatotoxicity.