आईएसएसएन: 2155-9899
Beichu Guo
The immune system is essential for host defense against pathogen infections; however dysregulated immune response may lead to inflammatory or autoimmune diseases. Elevated activation of both innate immune cells and T cells such as Th17 cells are linked to many autoimmune diseases, including Multiple Sclerosis (MS), arthritis and inflammatory bowel disease (IBD). To keep immune homeostasis, the immune system develops a number of negative feedback mechanisms, such as the production of anti-inflammatory cytokine IL-10, to dampen excessive production of inflammatory cytokines and uncontrolled activation of immune cells. Our recent studies uncover a novel immunoregulatory function of interferon (IFN) pathways on the innate and antigen-specific immune response. Our results show that IFNα/β induced IL-10 production from macrophages and Th17 cells, which in turn negatively regulated Th17 function in autoimmune diseases such as Experimental Allergic Encephalomyelitis (EAE), an animal model of human MS. In a chronic colitis model resembling human IBD, we also found that IL-10 inhibited inflammasome/IL-1 pathway, and the pathogenicity of Th17 cells, leading to reduced chronic intestinal inflammation. Results from our and other studies further suggest that IL-10 produced by both macrophages and regulatory T cells may shift Th17 into more regulatory phenotypes, leading to reduced inflammatory response.