आईएसएसएन: 0976-4860
M Ghasempour-Mouziraji*, H Ghorbani-Menghari, M Hosseinzade, J Shahbazi Karami, D Wei and J Maktoubian
More recently, several studies have been done to improve the mechanical properties of materials. During this period, various methods of SPD (severe plastic deformation (SPD)) have been used to produce Ultra-Fine-Grain (UFG) materials. One of the pioneers in replacing SPD is the elliptical cross-sectional flattened extrusion (ECSEE). In the present study, an optimal combination of the process parameters of the ECSEE method, such as the torsional angle, ellipticity and elliptical diameter ratio, to obtain the maximum effective pressure and minimum punch force, as well as the minimum subsequent error in the cross section of the ABAQUS Software for modeling Numeric done. Due to the design of the central composite test, models of punch force response levels, effective pressure and subsequent error are generated through FE simulation. The simulation results showed that the effective strain was significantly affected by the rotation angle, diameter ratio and channel length. After two ECSEE courses, power ranged from 384 MPa to 340 MPa and its life span was reduced from 15% to 8%. Also, the FEM results indicate that the amount of effective pressure on the surface is greater than the center of the ECSEE pen. The results showed that the torsional angle of 120°, the length of the diameter of 16 and the ratio of the axis to 1.45, the optimal solution give the desired quality characteristics.