आईएसएसएन: 1314-3344
योंग यांग और हैयान झान
मान लीजिए G एक समूह है और ω(G) G के तत्व क्रमों का समूह है। मान लीजिए k ∈ ω(G) और sk G में k क्रम के तत्वों की संख्या है। मान लीजिए nse(G) = {sk k ∈ ω(G)}। समूह L2(8) और L2(16) nse(G) द्वारा निर्धारित अद्वितीय हैं। इस पत्र में, हम साबित करते हैं कि यदि G एक ऐसा समूह है जिससे nse(G)=nse(L2(2m)), तो G ∼= L2(2m) होगा।